Optical properties of ZrB2 porous architectures

نویسندگان

  • Elisa Sani
  • Elena Landi
  • Diletta Sciti
  • Valentina Medri
چکیده

Porous ceramic materials are currently used as volumetric sunlight absorbers in concentrating solar power systems. As the efficiency of thermodynamic cycles rapidly increases with the operating temperature, the favorable characteristics of so-called ultra-high temperature ceramics (UHTCs) can be successfully exploited in novel solar absorbers. The present work reports, for the first time to the best of our knowledge, on optical properties and microstructural analysis of novel ice-templating porous ZrB2 UHTCs, to evaluate their potential as volumetric solar receivers. We demonstrate that the different complex structures that can be obtained with the freeze casting technique show promising optical properties. The idea of conjugating an highly tailorable morphology, useful for optimizing gas fluxes and heat exchanges between absorber and gas, to the spectral selectivity which is a characteristics of ZrB2 can be a promising route for increasing the efficiency of thermal solar systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural and optical properties of n- type porous silicon– effect of etching time

Porous silicon layers have been prepared from n-type silicon wafers of (100) orientation. SEM, FTIR and PL have been used to characterize the morphological and optical properties of porous silicon. The influence of varying etching time in the anodizing solution, on structural and optical properties of porous silicon has been investigated. It is observed that pore size increases with etching tim...

متن کامل

Correlation Between Surface Morphology and Optical Properties of Quasi-Columnar Porous Silicon Nanostructures

In the current work, the effect of surface morphology on light emission property and absorption behavior of quasi-columnar macro-porous silicon (PS) was investigated. PS structures with different morphology were synthesized using photo-electrochemical etching method by applying different etching current densities. SEM micrographs showed that empty macro-pores size and porosity of PS layers were...

متن کامل

بررسی وابستگی میکروساختارهای سطحی سیلیکان متخلخل و خواص اپتیکی آن

  We have studied the effect of increasing porosity and its microstructure surface variation on the optical and dielectric properties of porous silicon. It seems that porosity, as the surface roughness within the range of a few microns, shows quantum effect in the absorption and reflection process of porous silicon. Optical constants of porous silicon at normal incidence of light with wavelengt...

متن کامل

Fabrication and inspection of C/Cf-ZrB2-ZrC-SiC and C/Cf-ZrB2-SiC composite parts resistant to ablation by pressureless sintering method

In this research, the aim is to achieve strong and ablation-resistant composite parts C / Cf-ZrB2-ZrC-SiC and C / Cf-ZrB2-SiC by non-pressure sintering method. C / Cf-ZrB2-SiC samples were prepared using synthesized ZrB2 and SiC powders between layers of resin-impregnated carbon fabric. After pressing with pressure 5 times at 1600 وC and heat treatment for 2 hours in a controlled atmosphere fur...

متن کامل

Association of Metallurgical Engineers of Serbia AMES Scientific paper UDC: 621.762; 66.017/.018 PREDICTION OF HARDNESS AND ELECTRICAL PROPERTIES IN ZRB2 PARTICLE REINFORCED METAL MATRIX COMPOSITES USING ARTIFICIAL NEURAL NETWORK

In the present study, the hardness and electrical properties of copper based composite prepared by hot pressing of mechanically alloyed powders were predicted using Artificial Neural Network (ANN) approach. Milling time (t, h), particles size of mechanically alloyed powders (d, nm), dislocation density (ρ, m) and compressive yield stress (σ0.2, MPa) were used as inputs. The ANN model was develo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016